Deeper 2 4 7 x 6 7 area rug
  • In 2013’s Half Life 2 mod Deep Down, Jim Partridge took several key aspects from Episode Two, Alyx and the car, and expanded on these in an attempt to re-create that amazing Half-Life 2 feeling that everyone is looking for.
  • 5 Square Boxes, 2-7/8 in. Deep Garvin Industries 2-7/8 inch boxes, electrical boxes, junction boxes, 2-7/8 deep boxes Shop the industry's best selection of 5 in. Square boxes at Garvin Industries. Enjoy easy ordering, quick delivery, and great prices, plus free shipping on select purchases!
X-3 Stiletto
RoleExperimental aircraft
ManufacturerDouglas
DesignerSchuyler Kleinhans, Baily Oswald and Francis Clauser[1]
First flight15 October 1952
Retired23 May 1956
StatusPreserved at National Museum of the United States Air Force
Primary usersUnited States Air Force
NACA
Number built1

The Douglas X-3 Stiletto was a 1950s United States experimental jet aircraft with a slender fuselage and a long tapered nose, manufactured by the Douglas Aircraft Company. Its primary mission was to investigate the design features of an aircraft suitable for sustained supersonic speeds, which included the first use of titanium in major airframe components. Douglas designed the X-3 with the goal of a maximum speed of approximately 2,000 m.p.h,[2] but it was, however, seriously underpowered for this purpose and could not even exceed Mach 1 in level flight.[3] Although the research aircraft was a disappointment, Lockheed designers used data from the X-3 tests for the Lockheed F-104 Starfighter which used a similar trapezoidal wing design in a successful Mach 2 fighter.

Design and development[edit]

The Douglas X-3 Stiletto was the sleekest of the early experimental aircraft, but its research accomplishments were not those originally planned. It was originally intended for advanced Mach 2 turbojet propulsion testing, but it fell largely into the category of configuration explorers, as its performance (due to inadequate engines) never met its original performance goals.[4] The goal of the aircraft was ambitious—it was to take off from the ground under its own power, climb to high altitude, maintain a sustained cruise speed of Mach 2, then land under its own power. The aircraft was also to test the feasibility of low-aspect-ratio wings, and the large-scale use of titanium in aircraft structures. The design of the Douglas X-3 Stiletto is the subject of U.S. Design Patent #172,588 granted on July 13, 1954 to Frank N. Fleming and Harold T. Luskin and assigned to the Douglas Aircraft Company, Inc.

Shop 3/4-in x 24-in x 6-ft square unfinished pine board in the appearance boards section of Lowes.com. Mantles, chests, deep shelves, cribs, toy boxes, and more.

Construction of a pair of X-3s was approved on 30 June 1949. During development, the X-3's planned Westinghouse J46 engines were unable to meet the thrust, size and weight requirements, so lower-thrust Westinghouse J34turbojets were substituted, producing only 4,900 pounds-force (22 kilonewtons) of thrust with afterburner rather than the planned 7,000 lbf (31 kN). The first aircraft was built and delivered to Edwards Air Force Base, California, on 11 September 1952.

The X-3 featured an unusual slender, streamlined shape having a very long, gently-tapered nose and small trapezoidal wings. The aim was to create the thinnest and most slender shape possible in order to achieve low drag at supersonic speeds. The extended nose was to allow for the provision of test equipment while the semi-buried cockpit and windscreen were designed to alleviate the effects of 'thermal thicket' conditions. The low aspect ratio, unswept wings were designed for high speed and later the Lockheed design team used data from the X-3 tests for the similar F-104 Starfighter wing design. Due to both engine and airframe problems, the partially completed second aircraft was cancelled, and its components were used for spare parts.[5]

Operational history[edit]

X-3 in flight

The first X-3 'hop' was made on 15 October 1952, by Douglas test pilotBill Bridgeman. During a high-speed taxi test, Bridgeman lifted the X-3 off the ground and flew it about one mile (1.6 km) before settling back onto the lakebed. The official first flight was made by Bridgeman on 20 October and lasted about 20 minutes. He made a total of 26 flights (counting the hop) by the end of the Douglas tests in December 1953. These showed that the X-3 was severely underpowered and difficult to control; its takeoff speed was unusually high—260 knots (300 mph; 480 km/h). More seriously, the X-3 did not approach its planned top speed. Its first supersonic flight required that the airplane make a 15° dive to reach Mach 1.1. The X-3's fastest flight, made on 28 July 1953, reached Mach 1.208 in a 30° dive.[3] A plan to re-engine the X-3 with rocket motors was considered but eventually dropped.[5]

With the completion of the contractor test program in December 1953, the X-3 was delivered to the United States Air Force. The poor performance of the X-3 meant only an abbreviated program would be made, to gain experience with low aspect ratio wings. Lieutenant ColonelFrank Everest and MajorChuck Yeager each made three flights. Although flown by Air Force pilots, these were counted as NACA flights. With the last flight by Yeager in July 1954, NACA made plans for a limited series of research flights with the X-3. The initial flights looked at longitudinal stability and control, wing and tail loads, and pressure distribution.

NACA pilot Joseph A. Walker made his pilot checkout flight in the X-3 on 23 August 1954, then conducted eight research flights in September and October. By late October, the research program was expanded to include lateral and directional stability tests. In these tests, the X-3 was abruptly rolled at transonic and supersonic speeds, with the rudder kept centered. Despite its shortcomings, the X-3 was ideal for these tests. The mass of its engines, fuel and structure was concentrated in its long, narrow fuselage, while its wings were short and stubby. As a result, the X-3 was 'loaded' along its fuselage, rather than its wings. This was typical of the fighter aircraft then in development or testing.

These tests would lead to the X-3's most significant flight, and the near-loss of the aircraft. On 27 October 1954, Walker made an abrupt left roll at Mach 0.92 and an altitude of 30,000 feet (9,100 metres). The X-3 rolled as expected, but also pitched up 20° and yawed 16°. The aircraft gyrated for five seconds before Walker was able to get it back under control. He then set up for the next test point. Walker put the X-3 into a dive, accelerating to Mach 1.154 at 32,356 ft (9,862 m), where he made an abrupt left roll. The aircraft pitched down and recorded an acceleration of -6.7 g (-66 m/s²), then pitched upwards to +7 g (69 m/s²). At the same time, the X-3 side-slipped, resulting in a loading of 2 g (20 m/s²). Walker managed to bring the X-3 under control and successfully landed.

The X-3 Stiletto on display in the R&D hangar of the U.S. Air Force Museum, 2005

The post-flight examination showed that the fuselage had been subjected to its maximum load limit. Had the acceleration been higher, the aircraft could have broken up. Walker and the X-3 had experienced 'roll inertia coupling,' in which a maneuver in one axis will cause an uncommanded maneuver in one or two others. At the same time, several North American F-100 Super Sabres were involved in similar incidents. A research program was started by NACA to understand the problem and find solutions.

For the X-3, the roll coupling flight was the high point of its history. The aircraft was grounded for nearly a year after the flight, and never again explored its roll stability and control boundaries. Walker made another ten flights between 20 September 1955 and the last on 23 May 1956. The aircraft was subsequently retired to the National Museum of the United States Air Force.[6]

Although the X-3 never met its intention of providing aerodynamic data in Mach 2 cruise, its short service was of value. It showed the dangers of roll inertia coupling, and provided early flight test data on the phenomenon. Its small, highly loaded unswept wing was used in the Lockheed F-104 Starfighter,[7] and it was one of the first aircraft to use titanium. Finally, the X-3's very high takeoff and landing speeds required improvements in tire technology.

Deeper 2 4 7 X 6 7

Production[edit]

Two aircraft were ordered, but only one was built, completing 51 test flights.

4/7 As A Decimal

Aircraft on display[edit]

  • The X-3 was transferred in 1956 to the National Museum of the United States Air Force at Wright-Patterson Air Force Base, Ohio.[8] As of 2008, it is on display in the Museum's Research & Development Gallery.[3]

Specifications (X-3)[edit]

Data from McDonnell Douglas aircraft since 1920 Volume 1[9]

Deeper 2 4 7 X 6 3000 Lbs

General characteristics

  • Crew: 1
  • Length: 66 ft 9 in (20.35 m)
  • Wingspan: 22 ft 8 in (6.91 m)
  • Height: 12 ft 6 in (3.82 m)
  • Wing area: 166.5 sq ft (15.47 m2)
  • Aspect ratio: 3
  • Empty weight: 14,345 lb (6,507 kg)
  • Gross weight: 20,800 lb (9,435 kg)
  • Max takeoff weight: 22,400 lb (10,160 kg)
  • Powerplant: 2 × Westinghouse XJ34-WE-17 afterburning turbojets, 3,370 lbf (15.0 kN) thrust each dry, 4,900 lbf (22 kN) with afterburner

Performance

  • Maximum speed: 613.5 kn (706.0 mph, 1,136.2 km/h) at 20,000 ft (6,100 m)
  • Maximum speed: Mach 0.987
  • Range: 432 nmi (497 mi, 800 km)
  • Endurance: 1 hour at 512.7 kn (590.0 mph; 949.5 km/h)at 30,000 ft (9,100 m)
  • Service ceiling: 38,000 ft (12,000 m) absolute
  • Rate of climb: 19,000 ft/min (97 m/s)
  • Wing loading: 124.9 lb/sq ft (610 kg/m2)
  • Thrust/weight: 0.476

See also[edit]

Aircraft of comparable role, configuration, and era

Related lists

References[edit]

  1. ^Hartman, Edwin Phelps (1 January 1970). Adventures in Research a History of Ames Research Center 1940-1965. University of California Libraries.
  2. ^'Popular Mechanics'. Hearst Magazines. January 1954: 102. Retrieved 4 April 2018.Cite journal requires journal= (help)
  3. ^ abcWinchester, Jim (General editor) (2007). Concept aircraft : prototypes, x-planes and experimental aircraft (Reprinted. ed.). Hoo: Grange Books. p. 88. ISBN978-1-84013-809-2.
  4. ^Hallion, Richard P. 'The NACA, NASA, and the Supersonic-Hypersonic Frontier.'NASA Technical Reports. Retrieved: 7 September 2011.
  5. ^ abWinchester 2005, p. 89.
  6. ^'Douglas X-3 Stiletto'. National Museum of the US Air Force™. Retrieved 4 April 2018.
  7. ^Pace, Steve (1991). X-Fighters : USAF experimental and prototype fighters, XP-59 to YF-23. Osceola, WI: Motorbooks International. p. 130. ISBN0-87938-540-5.
  8. ^United States Air Force Museum Guidebook 1975, p. 88.
  9. ^Francillon, René J. (1988). McDonnell Douglas aircraft since 1920 Volume 1 (New ed.). London: Putnam. pp. 450–454. ISBN978-0851778273.
  • United States Air Force Museum Guidebook. Wright-Patterson AFB, Ohio: Air Force Association, 1975 edition.
  • Winchester, Jim. 'Douglas X-3.' Concept Aircraft: Prototypes, X-Planes and Experimental Aircraft. Kent, UK: Grange Books plc, 2005. ISBN978-1-84013-809-2.


External links[edit]

Wikimedia Commons has media related to X-3 Stiletto.
Retrieved from 'https://en.wikipedia.org/w/index.php?title=Douglas_X-3_Stiletto&oldid=1000722260'

Hardware
Mechanical Components

MotherBoard Form Factors


[PC Mother Board Manufacturers] [Embedded Mother Board Manufacturers]
[Back Planes] [PC Case Manufacturers]
[Home]

Current MotherBoard form factors; Also sub-divided into the Processor Socket types:
Socket refers to the type of processor ZIF socket used. Slot refers to the Processor residing in a Daughter card.


...AT: 12' x 11' - 13' [Obsolete, replaced by the Baby-AT, and ATX form factors]
...Baby AT: 11.2' wide x 8.2' deep. Original IBM PC Motherboard
...microATX: 9.6' wide x 9.6' deep (244mm x 200mm).
...Mini-ATX: 11.2' wide x 8.2' deep. Smaller version of the ATX Mother Board.
...Flex ATX:9.0' wide x 7.5' deep (229mm x 190.5mm). Differs from microATX; new socketed processor, smaller, ATX 2.03 I/O panel
...NLX: (9.0' wide x 13.6' deep) to (8.0' wide x 10.0' deep) and any size in between.
...LPX: 9' x 11' - 13' [228.6mm x 279.4 - 330.2 mm]. Expansion slots are mounted on a bus riser that connects to the motherboard.
........MiniLPX: 8' - 9' x 10' - 11' [203 - 228mm x 254 - 279mm]. Smaller version of the LPX Motherboard
...WTX: (workstations)
...ATX: 12' wide x 9.6' deep (305mm x 244mm). Essentially a Baby AT mother board rotated 90 degrees in the chassis. Released 1996.
........Slot 1: [242 pins] Intel Pentium II/III. AMD Celeron
........Slot 2: Dual Xeon
........Slot A: AMD Athlon, Thunderbird, Duron K7;
........Socket A: AMD Duron, Sempron, Thunderbird and XP Athlon microprocessors [Socket A graphic]
........Socket T: Intel Pentium 4, 775 conductor Prescott CPU
........Socket 1: [169 pins] Intel 486SX, 486DX, 486DX2, 486DX4 processors
........Socket 2: [238 pins] Intel 486SX, 486DX, 486DX2, 486DX4, Pentium processors
........Socket 3: [237 pins] Intel 486SX, 486DX, 486DX2, 486DX4, Pentium. AMD, Cyrix processors
........Socket 4: [237 pins] Intel Pentium 1 66MHz
........Socket 5: [320 pins] Intel Pentium 75MHz, 133MHz
........Socket 6: [235 pins] Intel 486DX, Pentium
........Socket 7: [321 pins] Intel Pentium. AMD K6-2, K6-III; (Super 7): TBD
........Socket 8: [387 pins] Intel Pentium Pro [Socket 8 graphic]
........Socket 370: Pentium II/III, Celeron [Socket 370 graphic]
........Socket 393: AMD Athlon
........Socket 423: Intel Pentium 4
........Socket 462: AMD
........Socket 478: Intel Pentium 4, smaller than Socket 423
........Socket 603: Intel Pentium 4, Intel Xeon processor
........Socket 604: Intel Pentium 4, Intel Xeon processor
........Socket 754: AMD Sempron, Athlon; 64-bit, 'single-channel' memory-controller and use unbuffered (non-registered) memory
........Socket 775: Intel Pentium 4
........Socket 939: Athlon 64 and Athlon 64 FX processors [128-bit, 'dual-channel' memory-controller]
........Socket 940: AMD Athlon 64 FX, Opteron processors [Server/Workstation, require registered memory]
........Socket AM2: AMD Athlon 64 Dual Core processors supporting DDR2 memory [M2 was the old name]
........Socket AM3: AMD Phenom II processors supporting DDR3 memory. AM3 uses 941 pins in a ZIF socket.
........Socket F: [FM1, FM2, FM3] AMD X2 Opteron processors [2xx 8xx server processors]
........Socket FM1, FM2, FM3: AMD processors
........Socket G3: [G3MX] AMD X2 processors [Supporting the DDR3 memory specification from JEDEC1]
...Extended ATX: 12' x 13.05' (W x H), also called EATX
...EmbATX: (EmbeddedATX) Same size as microATX, w/ height of 2 inches
...FlexATX: 228.60mm x 2190.50mm (Width x Depth)
...microATX: 243.84mm x 243.84mm (Width x Depth)
...BTX: (Balanced Technology Extended) 325.12mm wide x 266.70mm deep [7 Expansion Slots]
........microBTX: (Balanced Technology Extended) 264.16mm wide x 266.70mm deep [4 Expansion Slot]
........nanoBTX: (Balanced Technology Extended) 223.52mm wide x 266.70mm deep [2 Expansion Slot]
........picoBTX: (Balanced Technology Extended) 203.20mm wide x 266.70mm deep [1 Expansion Slot]
...ITX: 220mm x 170mm
........mini-ITX: 170mm x 170mm
........nano-ITX: 120mm x 120mm
........pico-ITX: 72mm x 100mm
...DTX: (Acronym not defined) 244mm wide x 200mm deep [2 Expansion Slots]
........miniDTX: (Acronym not defined) 170 wide x 200mm deep [2 Expansion Slot]


Server Formats. Server System Infrastructure (SSI) Specifications.
........CEB; (Compact Electronics Bay) 305mm x 267mm. Server, dual or multi processor motherboards.
........EEB; (Enterprise Electronics Bay) 305mm x 330mm. Server, dual or multi processor motherboards.
........TEB; (Thin Electronics Bay) 411mm x 330mm. Server, dual or multi processor motherboards.

Deeper 2 4 7 X 6 7 Area Rug

Embedded Mother Board Formats:
........EBX; 8.00' x 5.75'
........ECX; 105mm x 146mm. Embedded Compact Extended Form Factor [Small Form Factor]
........ePCI-X; 8.00' x 5.75'. Embedded PCI eXtended
........ETX; (Embedded Technology eXtended) 95mm x 111.6mm (5.75 x 8 inches)
........ETXexpress; (Embedded Technology eXtended) 90mm x 125mm, based on the PCIexpress bus
........EPIC; (Embedded Platform for Industrial Computing) 4.528' x 6.496' (115mm x 165mm). Contains a PC/104 stack area
........SOM-ETX; (System On Module - ETX) 4.50' x 3.70' (114mm x 95mm)
........5.25' Mini Module; 8.0' x 5.75' (203mm x 146mm)
Embedded Cards by Board Form Factor
There are also a number of PC power supply standards which appear as Mother Board specifications:
..ATX12V: ATX power supply specification
..CFX12V: [Compact Form Factor] power supply specification
..LFX12V: [Low Form Factor] another variation of the BTX12V power supply specification
..SFX12V: microATX and FlexATX power supply specification
..TFX12V: [Thin Form Factor] for small and low profile microATX and FlexATX system layouts
Embedded Mother Board manufacturers are listed on the OEM COTS MotherBoard Manufacturers page.
Memory Module formats and manufacturers are listed on the Memory Module Formats and Manufacturers page.
New form factors are developed all the time, this list may not cover all of them.


This is a listing of Personal Computer Mother Board form factors.
The approximate size of the board is listed after the common name.
In many cases the the style of processor is also listed. Computer Buses

Home

DistributorsComponentsEquipmentSoftwareStandardsBusesDesignReference

Deeper 2 4 7 X 6
Modified 1/10/12
Copyright © 1998 - 2016 All rights reserved Larry Davis